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Abstract. An efficient support of a single decision maker is vital in
constructing scalable systems addressing complex decision-making (DM)
tasks. Fully probabilistic design (FPD) of DM strategies, an extension
of dynamic Bayesian DM, provides a firm basis for such a support.
The limited cognitive and evaluation resources of the supported decision
maker cause that theoretically optimal solutions are realised only approx-
imately. Thus, the truly efficient support has to include reliable means
for constructing approximate solutions of DM subtasks. The current pa-
per deals with the design of the approximately optimal DM strategy for
a known environment model and adequately described DM preferences.
The design relies on: a) the explicit minimiser found within FPD; b)
randomised nature of the strategy provided by FPD.

Keywords decision making; Bayesian learning; minimum cross-entropy princi-
ple; fully probabilistic design of DM strategies; linear-quadratic DM

1 Introduction

The paper addresses a particular problem within a research aiming at creation
of a systematic support of DM. The support has to respect that any real decision
maker devotes a limited cognitive and evaluation resources to single DM problem
and mostly has to use an approximation of theoretically optimal DM strategy.
A design of such strategy is made here for a specific but widely applicable DM.

1.1 Basic Notions

This subsection fixes basic notions, which strongly vary over different DM-
inspecting domains (statistics, economy, control theory, machine learning, etc.).

The decision maker designs and uses the DM strategy s = (st)t∈t ∈ s, t =
{1, 2, . . . , T}1. The DM rules st, forming the strategy s, are indexed by the
discrete time t and map non-decreasing available knowledge (kt ∈ kt)t∈t, kt−1 j
kt, on actions (at ∈ at)t∈t, st : kt−1 → at ̸= ∅.
1 Throughout, z denotes a set of possible instances of z.
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The considered knowledge increments are data records dt ∈ dt = kt \ kt−1

(\ denotes substraction of sets). The data record consists of the observed en-
vironment response rt and of the applied action at. Thus, dt = (rt, at) and
kt−1 = (dt−1, . . . , d1, k0), where k0 denotes prior knowledge.

The DM strategy is designed with the aim to satisfy decision maker’s DM
preferences in the best possible way. They are expressed here as preferences with
respect to possible closed-loop behaviours b ∈ b

b = (gt, at, kt−1). (1)

The part gt collects variables up to the DM horizon T , which are considered by
the decision maker but unavailable for choosing the action at.

1.2 FPD Formulation of DM Under Uncertainty

The addressed DM under uncertainty arises whenever the available knowledge
kt−1 and the chosen action at do not allow the decision maker to determine
uniquely the value of gt, at least for some t ∈ t. The classical axiomatisation
[16, 1] of DM under uncertainty leads to Bayesian DM, which selects the optimal
DM strategy sL as a minimiser of an expected loss

sL ∈ Argmin
s∈s

Es[L|k0] = Arg min
(st:kt−1→at)t∈t

∫
b

L(b)fs(b|k0) db. (2)

Bayesian DM requires specification of a loss L : b → (−∞,∞], quantifying
decision-maker’s preferences, and of the probability distribution of the possible
behaviours b ∈ b. It serves for evaluation of the conditional expectations Es[·|k0]
for strategies s ∈ s and it is given by the probability density (pd, fs(b|k0)) of
behaviours b conditioned on a prior knowledge k0 with respect to a measure db.

The exploited fully probabilistic design (FPD) of DM strategies [8, 20] quan-
tifies DM preferences via an ideal pd fI(b|k0), which expresses desirability of
possible behaviours b ∈ b. FPD selects the strategy-dependent loss Ls = ln(fs/fI).
With this loss, the optimal DM strategy so becomes the minimiser of the Kullback-
Leibler divergence D(fs||fI) (KLD, [12])

so ∈ Argmin
s∈s

E[ln(fs/fI)|k0] = Argmin
s∈s

∫
b

fs(b|k0) ln
(
fs(b|k0)
fI(b|k0)

)
db

= Arg min
(st:kt−1→at)t∈t

D(fs||fI). (3)

It is always possible to construct explicitly a FPD problem formulation, which
is arbitrarily close to the given Bayesian DM task [10] and there are practically
significant FPD tasks having no Bayesian counterpart [9].

1.3 The Addressed Problem and Solution Idea

The design of the optimal DM strategy (2) reduces to dynamic programming
[2]. It gives deterministic strategy sL generating actions, which are minimising
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arguments in the functional equation evolving value function ζL(kt) against time

ζL(kt−1) = min
at∈at

E[ζL(kt)|at, kt−1], ζL(kT ) = L(b). (4)

The existence of its analytical solution is an exception and a version of approx-
imate dynamic programming [18] is inevitable.

The design of the optimal DM strategy so (3) is similar to (4) and also calls
for an approximation in generic case. Its design is addressed in this paper. The
proposed approximation exploits that: i) FPD has an explicit minimiser [8],
ii) the value function ζ(kt) in FPD solves a nonlinear integral equation, which
determines the unique randomised optimal DM strategy.

The proposed approximation exploits the fact that the integral equation for
the value function ζ(kt) has to hold for any knowledge kt even if it resulted
from an application of non-optimal actions. Thus, it suffices to find a function,
which solves the discussed equation on a sufficiently rich subset of kt and then
we surely get an approximation of the value function.

Technically, the integral equation is converted into a probabilistic model of
a parametric approximation of the value function. Then, parameter estimates
are updated via the Bayes rule on realised (non-optimal) past. The application
of the corresponding randomised DM strategy makes the acquired knowledge
sufficiently rich. The inevitable approximation errors can be and should be taken
into account by employing stabilised forgetting [11]. This measure is advisable
to any approximate sequential learning [6].

1.4 Layout

Section 2 specifies the assumptions delimiting the supported DM tasks and re-
calls the exploited information about FPD. Section 3 forming the core of the
paper proposes the approximation of the optimal FPD strategy. Section 4 ap-
plies the general result to a widely used linear-quadratic dynamic DM (control,
[13]). Section 5 provides a numerical illustration. Section 6 concludes the text.

2 Stationary FPD Caring about Observable Behaviour

In this preparatory section, the DM task leading to a stationary version of FPD
is formulated and solved. For the sake of presentation simplicity, it deals with
preferences specified for observable behaviours only. Thus, the part gt of the
behaviour b in (1) consists of yet unobserved environment responses (rτ )τ≥t and
non-applied actions (aτ )τ>t.

The pd fs(b|k0), describing behaviours b ∈ b under a DM strategy s ∈ s, can
be factorised via the chain rule [15]

fs(b|k0) =
∏
t∈t

fs(rt|at, kt−1)︸ ︷︷ ︸
environmentmodel

× fs(at|kt−1)︸ ︷︷ ︸
DM-rulemodel

(5)

kt = ((rt, at), kt−1) = (dt, kt−1) is the knowledge available for choosing at+1.
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2.1 Considered Class of DM Tasks

The supported DM tasks are delimited by the following conditions.

• The environment model is a time-invariant, strategy-independent, state-
space model m(xt|at, xt−1) with the finite-dimensional real state xt ∈ xt

and action at ∈ at. The state xt is a known image of its previous value xt−1

and of the observed data record dt = (rt, at). Thus, for all t ∈ t,

fs(rt|at, kt−1) = m(xt|at, xt−1).

• The initial state x0 is assumed to be a part of the prior knowledge k0.
• The DM rules st having the same model (5) are operationally equivalent and
they are formally identified with their model. Thus, for all t ∈ t,

st(at|kt−1) = fs(at|kt−1).

• The ideal pd fI(b|k0) only cares about preferences on the observed states
and actions and thus it can be factorised as follows

fI(b|k0) =
∏
t∈t

mI(xt|at, xt−1)sI(at|xt−1), (6)

where the given pds mI , sI in (6) are assumed to be time-invariant.
• The design is performed for the DM horizon T → ∞.

2.2 Optimal DM Strategy To Be Approximated

Proposition 1 (Solution of Stationary FPD) Let a stabilising DM strategy
ss ∈ s exist, which means that

css = lim
T→∞

1

T
D(fss ||fI) < ∞.

Then, the optimal DM strategy, minimising the KLD (3), is stabilising, station-
ary so(b|k0) =

∏
t∈t s

o(at|xt−1) and determined by the time-invariant DM rule

so(at|xt−1) =
sI(at|xt−1) exp [−D(at, xt−1)− H(at, xt−1)]∫

at

sI(at|xt−1) exp [−D(at, xt−1)− H(at, xt−1)] dat︸ ︷︷ ︸
exp[−h(xt−1)]

(7)

D(at, xt−1) =

∫
xt

m(xt|at, xt−1) ln

(
m(xt|at, xt−1)

mI(xt|at, xt−1)

)
dxt ≥ 0 (8)

H(at, xt−1) =

∫
xt

m(xt|at, xt−1)h(xt) dxt ≥ −c (9)

c = lim
T→∞

1

T
D(fso ||fI) ∈ [0, css ] ⇒ ζ(xt) = c+ h(xt) ≥ 0. (10)
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Proof It is omitted as it follows steps used in proving standard dynamic pro-
gramming [2]. It only exploits the fact that the KLD reaches its minimum zero
value for coinciding arguments. You can consult [3] containing the proof con-
cerning general case with preferences specified also for unobserved states. ⊓⊔
Remarks

• The functional equations (7) – (9) rarely have an analytical solution. Their
approximate solution is proposed in Section 3.

• The function exp[−h(x)] is proportional to the stationary pd of the state
when the optimal strategy is used. It is seen from (7) and the conditioning
rule pd(a|x) = pd(a, x)/pd(x). This interpretation should be respected when
selecting the set of functions in which its approximation is searched for.

• The decisive function h(xt) is the shifted value of the non-negative value
function ζ(xt) (10). Its non-negativity implies H(at, xt−1) ≥ −c (9).

• The function D(at, xt−1) (8) is non-negative as it is the conditional KLD of
the environment model m from its ideal counterpart mI .

• All involved functions are assumed to be time invariant. The time-invariance
of the environment model m(xt|at, xt−1) is asymptotically guaranteed if it is
obtained as the predictive pd resulting from Bayesian learning, [15]. Thus,
the presented treatment is extendable to this case.

3 Approximation of the Optimal Strategy

Here, the approximation of the optimal DM strategy is searched for. It consists
of approximations of the functions D, H defining the pd so (7), cf. Proposition 1.

The conditional KLD D(at, xt−1) =
∫
xt

m(xt|at, xt−1) ln
(

m(xt|at,xt−1)
mI(xt|at,xt−1)

)
dxt

in (7) is time-invariant and can be, at least approximately, evaluated off-line.
Thus, the approximation concerns primarily the shifted value function h(xt)
and its expectation H(at, xt−1) with respect to the environment model

H(at, xt−1) = E[h|at, xt−1] =

∫
xt

m(xt|at, xt−1)h(xt) dxt.

3.1 Technical Elaboration

The proposed approximation uses:

• parametric approximation of h(x) ≈ h(x,Θ) inducing the approximation

H(a, xt−1) = E[h|a, xt−1] ≈ H(a, xt−1, Θ) = E[h(·, Θ)|a, xt−1, Θ];

• mean-value theorem applied to the integral over at, Proposition 1 & (11);
• decomposition of expectation H(a, xt−1, Θ) = E[h(·, Θ)|a, xt−1, Θ] in h(xt, Θ)
and innovation ε(a, xt−1, Θ): H(a, xt−1, Θ) = h(xt, Θ)+ε(xt, a, xt−1, Θ) [15];

• minimum KLD (cross-entropy) principle [17], which extends a partial infor-
mation about a pd into the complete pd.
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Proposition 1 implies that the function h(x,Θ) should solve the equation

exp[−h(xt−1, Θ)] =

∫
at

sI(at|xt−1) exp [−D(at, xt−1)− H(at, xt−1, Θ)] dat, (11)

which has to hold for any state xt−1 ∈ xt−1 even if it resulted from use of non-
optimal past actions. An application of mean-value theorem to this equation,
introduction of innovations and logarithmic transformation provide

−h(xt−1, Θ) = ln

[∫
at

sI(at|xt−1) exp[−D(at, xt−1)] dat

]
︸ ︷︷ ︸

ϕ(xt−1)<0

+ ln

(
exp

[
−
∫
xt

m(xt|a(xt−1, Θ), xt−1)h(xt, Θ) dxt

])
= ϕ(xt−1)− h(xt, Θ) + εt(xt, a(xt−1, Θ), xt−1, Θ), (12)

where a(xt−1, Θ) denotes the action resulting from the mean-value theorem.

The time and Θ invariant function ϕ(xt−1) is negative. It can be prepared
off-line and thus it is fully determined by the knowledge kt−1. The innovations

εt(xt, a(xt−1, Θ), xt−1, Θ) = h(xt, Θ)−
∫
xt

m(xt|a(xt−1, Θ), xt−1)h(xt, Θ) dxt

are, by construction, zero mean and uncorrelated with their past values, [15],∫
xt

εt(xt, a(xt−1, Θ), xt−1, Θ)m(xt|a(xt−1, Θ), xt−1) dxt = 0.

This property and (12) imply that the positive random value of the value function
ζ(xt, c, Θ) = c + h(xt, Θ) has conditional expectation ζ(xt−1, c, Θ) + ϕ(xt−1) ∈
(0,∞), i.e.

E[ζ(xt, c, Θ)− ζ(xt−1, c, Θ)|ζ(xt−1, Θ), kt−1, Θ] = ϕ(xt−1) < 0. (13)

The minimum KLD principle [17] completes this information about the con-
ditional expectation into the exponential distribution

f(ζ(xt, c, Θ)|ζ(xt−1, c, Θ), kt−1, c, Θ) =
exp

[
− ζ(xt,c,Θ)

ζ(xt−1,c,Θ)+ϕ(xt−1)

]
ζ(xt−1, c, Θ) + ϕ(xt−1)

. (14)

In order to avoid discussion of non-linear Bayesian learning, which is out our
scope, we also adopt the approximation

ζ(xt−1, c, Θ) = c+ h(xt−1, Θ) ≈ (ĉt−1 + h(xt−1, Θ̂t−1))χ(c+ h(xt−1, Θ̂t−1) ≥ 0),
(15)
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where ĉt−1, Θ̂t−1 are point estimates of c,Θ based on kt−1 and χ(·) is an indicator
function of the set in its argument. In this way, the parametric model relating
ζ(xt, c, Θ) to the knowledge kt−1 and unknown c,Θ is obtained

f(ζ(xt, c, Θ)|kt−1, c, Θ) = α−1
t−1 exp [−(c+ h(xt, Θ))αt−1]χ(c+ h(xt−1, Θ̂t−1) ≥ 0)

α−1
t−1 = ĉt−1 + h(xt−1, Θ̂t−1) + ϕt−1 (16)

= ĉt−1 + h(xt−1, Θ̂t−1) + ln

(∫
at

sI(at|xt−1) exp[−D(at, xt−1)] dat

)
.

The gained parametric model is used in Bayesian learning, which evolves the
posterior pd f(c,Θ|kt) on the unknown c, Θ. The evolution has the form, cf.
(14), (15) and (16)

f(c,Θ|kt) ∝ f(c,Θ|kt−1) exp [−(c+ h(xt, Θ))αt−1] (17)

Non-negativity of ζ(xt, c, Θ) and its conditional expectation is the key informa-
tion about c, which subtracts in (13). It implies that c ≥ maxτ≤t−1(−hτ ).

3.2 Discussion

Here, explanatory comments are added to the above technical manipulations.
In summary, the proposed learning of DM strategy relies on the heuristic steps:
• The parametric expression c+ h(x,Θ) of the value function ζ(x) is supposed
to approximate well the value function for some Θ ∈ Θ.
This assumption can be met by an appropriate choice of the function h(x,Θ),
by exploiting a “universal approximation property” [4]. In this respect, it is
important that, by construction, the approximated function exp[−h(x)] is
proportional to the stationary distribution of xt for the optimal strategy.

• The pd of the approximate value function ζ(xt, c, Θ) = c+ h(xt, Θ) has been
derived via maximum entropy while neglecting a direct information about the
environment model m(xt|at, xt−1).
This assumption is unrestrictive as the scalar h(xt, Θ) depends on multivari-
ate xt and the adopted DM strategy in a complex unknown way. It means
that a negligible amount of useful and truly available knowledge is neglected.
The dependence on the environment model and the ideal counterpart of the
applied DM strategy projects into the weight αt−1 (16).

• The crude approximation (15) is adopted.
This assumption is generally unnecessary. It has helped us in suppressing
the need to discuss non-linear Bayesian learning, which is out of our scope.

The following points are also worth discussing.
• The posterior pd on Θ serves for approximating the optimal DM strategy,
i.e. for estimation of H(at+1, xt) = E[h(·)|at+1, xt]. It hints to take

H(at+1, xt) ≈
∫
xt+1

m(xt+1|at+1, xt)

∫
Θ

h(xt+1, Θ)f(Θ|kt) dΘ dxt+1

≈
∫
xt+1

m(xt+1|at+1, xt)h(xt+1, Θ̂t) dxt+1 = Ĥ(at+1, xt).
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The last approximate equality delimits the needed point estimate Θ̂t of Θ.
• The function −D(at+1, xt)−Ĥ(at+1, xt|k) is immediately used for generating
at+1, see (7). After applying at+1 and recording xt+1, the learning process
can continue. The randomised nature of the optimal DM strategy in FPD
makes the used DM strategy explorative. The higher is uncertainty about
the parameter Θ the flatter is the pd used for generating at+1. It indicates
qualitatively plausible variations of the exploration extent.

• The actions a(xt−1, Θ) considered in approximate evaluations (12) origin
from the ideal counterpart of the DM strategy, neither from the optimal nor
the used DM strategy. The basic idea of the construction indicates that the
learning running on non-optimal states, caused by the applied non-optimal
actions, is counteracted by the weight αt−1 (16) determined by the combi-
nation environment model – ideal strategy.

• It is possible to introduce additional weighting suitable whenever learning
contains some approximation error [6]. We shall not employ it in order to
check whether the proposed learning copes with the “incorrect data”.

4 Application to Linear-Gaussian DM

The influence and extent of the applicability of adopted approximations as well
as of heuristic assumptions, see Section 3, are yet unclear. Thus, it makes sense to
check the proposed procedure on a case with a known solution. Linear-Gaussian
DM treated here serves to this purpose. It is given by the following assumptions.

• The environment model is linear Gaussian

m(xt|at, xt−1) = Nxt(Axt−1 +Bat, R)

Nx(µ,R) = |2πR|−0.5 exp
[
−0.5(x− µ)′R−1(x− µ)

]
,

where A, B, determining its conditional expectation, as well as positive def-
inite covariance R > 0 are known matrices of dimensions compatible with
the vectorial state xt and action at.

′ denotes transposition.
• The ideal counterpart of the environment model is chosen also Gaussian

mI(xt|at, xt−1) = Nxt(0, R).

It reflects the wish to push the state to zero (so called regulation problem,
[13]). The equality of covariances of the environment model and its ideal
counterpart respects the fact that R represents the lowest reachable covari-
ance. The ideal counterpart of the DM strategy is chosen also Gaussian

sI(at|xt−1) = Nat(0, q).

This ideal pd represents the wish to spare acting energy 0.5a′tq
−1at.

In this case, the exact solution of FPD is known, [5]. It holds

exp[−h(x)] = Nx(0, S) the covariance S > 0 is known as Riccati matrix

so(at|xt−1) = Nat(−L′xt−1, Q),
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where the matrices S > 0, Q > 0 as well the matrix L (control law) are deter-
mined by parameters of the environment model and those of ideal pds.

The proposed procedure specialises to this case as follows.

The function D(at, xt−1) (8), the conditional KLD of the pd m from the pd
mI , can be computed analytically, e.g. [7],

D(at, xt−1) = 0.5 (Axt−1 +Bat)
′
R−1 (Axt−1 +Bat) .

The function ϕ(xt−1) (12) is also given analytically

ϕ(xt−1) = ln

[∫
at

sI(at|xt−1) exp[−D(at, xt−1)] dat

]
(18)

= 0.5
[
ln
(∣∣I + qB′R−1B

∣∣)− x′
t−1A

′(R+BqB′)−1Axt−1

]
,

where I denotes unit matrix. The neat final form is obtained by employing so
called Woodbury formula.

The next approximation h(x,Θ) of h(x) admits the needed comparisons

exp[−h(x,Θ)] = Nx(0, Θ), Θ > 0 ⇒ h(x,Θ) = 0.5(ln(|Θ|)+x′Θ−1x)+constant.
(19)

The forms of ϕ(xt−1) (18) and of h(x) (19) specialise the learning (17) to

f(Θ|kt) ∝ f(Θ|kt−1) exp [−(c+ h(xt, Θ))αt−1]χ(c+ h(xt, Θ̂t) ≥ 0)

∝ |Θ|−0.5νt exp
[
−(cνt + 0.5tr

(
Θ−1Vt

)
)
]
χ(c ≥ c̄t)

c̄t = max
[
c̄t−1,−0.5

(
ln

(∣∣∣Θ̂t

∣∣∣)+ x′
tΘ̂txt

)]
Vt = Vt−1 + αt−1xtx

′
t, νt = νt−1 + αt−1, αt−1 =

2

2ĉt−1 + ln
(
|I + qB′R−1B| |Θ̂t−1|

)
+ x′

t−1(Θ̂
−1
t−1 −A′(R+BqB′)−1A)xt−1

V0 > 0, ν0, c̄0 > 0 determine the prior pd in the self-reproducing form

f(c,Θ|k0) ∝ |Θ|−0.5ν0 exp
[
−
(
cν0 + 0.5tr

(
Θ−1V0

))]
χ(c ≥ c̄0). (20)

The final formula (20) is intuitively plausible as:

• Θ should estimate the Riccati matrix, which is covariance matrix of the state
in the closed loop with the optimal DM strategy. The proposed learning
provides such estimate in the form of the weighted covariance. The adopted
maximum-likelihood estimates ĉt, Θ̂t of c,Θ for the knowledge kt are

ĉt = c̄t, Θ̂t =
Vt

νt
. (21)

• The weight of the dyad increment xtx
′
t is the higher the closer is xt−1 to 0.

• The relative closeness of xt−1 to zero is determined by relations between
properties of the controlled environment (A,B,R) and the cost q of actions.
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The approximately optimal DM strategy corresponding to (7) and (21) is

ŝt+1(at+1|xt) ∝ Nat(0, q) exp[−D(at+1, xt)− Ĥ(at+1, xt)]

∝ exp
[
−0.5

(
a′t+1q

−1at+1 + (Axt +Bat+1)
′
(Θ̂−1

t +R−1) (Axt +Bat+1)
)]

= Nat+1(−L̂txt, Q̂t)

Q̂t = (q−1 +B′(Θ̂−1
t +R−1)B)−1, L̂t = Q̂tB

′(Θ̂−1
t +R−1)A.

Structurally, it corresponds with the optimal DM strategy. Limited experimental
experience indicates that the procedure often approaches the optimal DM strat-
egy. The approximation quality can be improved by employing the stabilised
forgetting counteracting the accumulation of approximation errors [6].

5 Numerical Example

This section illustrates numerically behaviour of the algorithm in linear-Gaussian
case described in the previous section. The environment model is specified by

A =

0.70 −0.30 0.80
0.70 0.95 0.20
0.20 0.00 0.90

 , B =

1.00
0.50
0.00

 , R =

 1.00 −0.20 0.20
−0.20 0.29 0.11
0.20 0.11 0.17

 ,

where the covariance is positive definite as it was generated as product of its
Choleski factors. In the inspected regulation problem and for the scalar action,
preferences are specified just via the ideal action variance q = 10. The results
are shown for T = 100 allowing to display time trajectories. Non-presented runs
up to T = 50000 confirmed stability of the solution and of the closed DM loop.

The optimal stationary strategy is given by the Gaussian pd
Nat(−[0.817, 0.788, −0.409]xt−1, 0.069),

while the proposed procedure provides

Nat(−[0.788, 0.781, −0.531]xt−1, 0.068).
Closeness of sample moments of states and actions with optimal and approximate
strategy indicates that the found strategy approximates well the optimal one.
Importantly, the essentially same approximate strategy has been obtained

Nat(−[0.794, 0.787, −0.512]xt−1, 0.064)
when the learning run with the optimal controller. The learning was also run
with enforced zero action. It lead to the controller

Nat(−[0.746, 0.722, −0.622]xt−1, 0.071),
with poorer, but still quite-reasonable, closed-loop behaviour. The mild deterio-
ration of quality can be attributed to the lack of exploration.

The possibility to learn reasonable strategy from non-optimal closed-loop
behaviour is the focal feature of the example as it indicates that the adopted
concept is sound. Numerically, it manifests on time course of the weights αt (16).
They become (relatively) large if the closed-loop behaviour is locally (even by
chance) close to the optimal one. Fig. 1 illustrates this statement by showing
time-courses of this weight in all described configurations of experiments.

For completeness, Figure 2 shows state evolutions in all configurations.
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Fig. 1. Time courses of αt (16). The left one corresponds to the closed-loop with the
proposed strategy. The middle one reflects learning with the optimally closed loop. The
right one concerns learning while action is fixed at zero value: the relatively high values
of αt are caused by the lack of informative data.
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Fig. 2. Time courses of state xt. The left one corresponds to the closed-loop with the
proposed strategy. The middle one concerns the optimally closed loop. The right one
concerns the loop with the action fixed at zero value. Scales reflect regulation quality.

6 Conclusions

The paper tries tailor approximate dynamic programming to fully probabilistic
design of DM strategies. The presented preliminary results indicate that the
addressed problem is solvable in the outlined way but otherwise the paper is an
open-ended story. The logical necessity of respective development steps is the
weakest conceptual point. Technically, the future work should focus on:

• analysing the proposed solution (at least via simulations);

• guiding in parameterisations of the function exp[−h(xt)] (universal approx-
imation [4], probably by dynamic mixtures [14, 19]);

• combining with Bayesian learning of the environment model, [15];

• addressing the DM problem with indirectly observed state, [8];

• applying forgetting as a universal counter-measure against accumulation of
approximation errors [6].
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11. Kulhavý, R., Zarrop, M.B.: On a general concept of forgetting. Int. J. of Control
58(4), 905–924 (1993)

12. Kullback, S., Leibler, R.: On information and sufficiency. Annals of Mathematical
Statistics 22, 79–87 (1951)

13. Meditch, J.: Stochastic Optimal Linear Estimation and Control. Mc. Graw Hill
(1969)
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